Now that we know what discrete derivates are, let’s see if we can derive (no pun intended) similar rules found in regular calculus.
Product Rule
Δh[fg](n)=h[fg](n+h)−[fg](n)=hf(n+h)g(n+h)−f(n)g(n)=hf(n+h)g(n+h)−f(n+h)g(n)+f(n+h)g(n)−f(n)g(n)=hf(n+h)(g(n+h)−g(n))+g(n)(f(n+h)−f(n))=f(n+h)hg(n+h)−g(n)+g(n)hf(n+h)−f(n)=f(n+h)Δhg(n)+g(n)Δhf(n)Quotient Rule
Δh[gf](n)=h[gf](n+h)−[gf](n)=hg(n+h)f(n+h)−g(n)f(n)=h1g(n+h)g(n)f(n+h)g(n)−f(n)g(n+h)=g(n+h)g(n)1hf(n+h)g(n)−f(n)g(n)+f(n)g(n)−f(n)g(n+h)=g(n+h)g(n)1hg(n)(f(n+h)−f(n))+f(n)(g(n)−g(n+h))=g(n+h)g(n)1(g(n)hf(n+h)−f(n)−f(n)hg(n+h)−g(n))=g(n+h)g(n)g(n)Δhf(n)−f(n)Δhg(n)