\&ref

Post[]

Discrete Calculus: Derivative Rules


June 17, 2020 · 18:42 pm · Discrete CalculusMath

Now that we know what discrete derivates are, let’s see if we can derive (no pun intended) similar rules found in regular calculus.

Product Rule

Δh[fg](n)=[fg](n+h)[fg](n)h=f(n+h)g(n+h)f(n)g(n)h=f(n+h)g(n+h)f(n+h)g(n)+f(n+h)g(n)f(n)g(n)h=f(n+h)(g(n+h)g(n))+g(n)(f(n+h)f(n))h=f(n+h)g(n+h)g(n)h+g(n)f(n+h)f(n)h=f(n+h)Δhg(n)+g(n)Δhf(n)\begin{aligned} \Delta_h [fg](n) &= \frac{[fg](n+h) - [fg](n)}{h} \\ &= \frac{f(n+h)g(n+h) - f(n)g(n)}{h} \\ &= \frac{f(n+h)g(n+h) - f(n+h)g(n) + f(n+h)g(n) - f(n)g(n)}{h} \\ &= \frac{f(n+h)(g(n+h) - g(n)) + g(n)(f(n+h)-f(n))}{h} \\ &= f(n+h) \frac{g(n+h) - g(n)}{h} + g(n) \frac{f(n+h) - f(n)}{h} \\ &= f(n+h) \Delta_h g(n) + g(n) \Delta_h f(n) \\ \end{aligned}

Quotient Rule

Δh[fg](n)=[fg](n+h)[fg](n)h=f(n+h)g(n+h)f(n)g(n)h=1hf(n+h)g(n)f(n)g(n+h)g(n+h)g(n)=1g(n+h)g(n)f(n+h)g(n)f(n)g(n)+f(n)g(n)f(n)g(n+h)h=1g(n+h)g(n)g(n)(f(n+h)f(n))+f(n)(g(n)g(n+h))h=1g(n+h)g(n)(g(n)f(n+h)f(n)hf(n)g(n+h)g(n)h)=g(n)Δhf(n)f(n)Δhg(n)g(n+h)g(n)\begin{aligned} \Delta_h \left[\frac{f}{g}\right](n) &= \frac{\left[\frac{f}{g}\right](n+h) - \left[\frac{f}{g}\right](n)}{h} \\ &= \frac{\frac{f(n+h)}{g(n+h)} - \frac{f(n)}{g(n)}}{h} \\ &= \frac{1}{h} \frac{f(n+h)g(n) - f(n)g(n+h)}{g(n+h)g(n)} \\ &= \frac{1}{g(n+h)g(n)} \frac{f(n+h)g(n) - f(n)g(n) + f(n)g(n) - f(n)g(n+h)}{h} \\ &= \frac{1}{g(n+h)g(n)} \frac{g(n)(f(n+h) - f(n)) + f(n)(g(n) - g(n+h))}{h} \\ &= \frac{1}{g(n+h)g(n)} \left(g(n) \frac{f(n+h) - f(n)}{h} - f(n) \frac{g(n+h) - g(n)}{h}\right) \\ &= \frac{g(n) \Delta_h f(n) - f(n) \Delta_h g(n)}{g(n+h)g(n)} \\ \end{aligned}

Streaming direct thought dumps from Yuto Nishida.
Connect with me on LinkedIn! I'm currently listening to:

Loading…
0:000:00